
MATH 304-Numerical Analysis 
and Optimization
---Nonlinear Equation Solver

Instructor: Peng Sun, Ph.D.
Email: peng.sun568@dukekunshan.edu.cn
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§S. C. Chapra, R. P. Canale, Numerical methods for Engineers 
(seventh edition), McGraw-Hill Education, 2015, Chapter 5,6
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• Introduction
•Bracketing method
•Open method
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§ Solver of equations f(x)=0
§ In the previous lecture, f(x) is linear, i.e., 𝑓 𝑥 = 𝐴𝑋 − 𝐵
§ In this lecture, we will extend to the case that f(x) is a nonlinear 

equation.

§ Features of nonlinear equation:
§ Closed form solution cannot be derived for a general nonlinear 

equation.
§ Iterative algorithm must be applied to find an approximation solution, 

i.e., numerical solution.
§ Bracketing solution
§ Open solution
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Nonlinear Equation 
Solvers

Bracketing Graphical Open Methods

Bisection
False Position 
(Regula-Falsi)

Newton Raphson

Secant

All Iterative



Graphical method

§ Simple and straightforward method

§ Obtaining an estimation of the root of the 
equation f(x)=0 by plotting the function and 
observing where it crosses the x axis.

§ Graphical techniques are of limited practical 
value because they are not precise. However, 
graphical methods can be utilized to obtain rough 
estimates of roots. These estimates can be 
employed as starting guesses for numerical 
methods.
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No answer (No root)

Nice case (one root)

Oops!!  (two roots!!)

Three roots( Might 
work for a while!!)

Two roots( Might 
work for a while!!)

Discontinuous 
function. Need 
special method



§ Motivation

§ The bracketing method exploits the fact that a function typically changes 
sign in the vicinity of a root. 

§ Key idea

1. Assuming that the solution of f(x)=0 is within an interval [a, b]

2. Iteratively shrink [a, b] to find the solution x
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1. Bisection method
2. False Position Method
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§ Basic logic: 
§ “Keep dividing in two for the interval within which at least one root 
lies”
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§ Algorithm:
For the arbitrary equation of one variable, f(x)=0
1. Pick x1 and x2 such that they bound the root of 

interest, check if f(x1).f(x2) <0.
2. Estimate the root by evaluating f[(x1+x2)/2].

3. Find the pair 
• If f(x1). f[(x1+x2)/2]<0, root lies in the lower interval, 

then x2=(x1+x2)/2 and go to step 2.
• If f(x1). f[(x1+x2)/2]>0, root lies in the upper interval, 

then x1= [(x1+x2)/2, go to step 2.
• If f(x1). f[(x1+x2)/2]=0, then root is (x1+x2)/2 and 

terminate.
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Example:

§ For a nonlinear equation 
f(x), with the initial guess 
that solution 𝑥 ∈ [12, 16]
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§Algorithm (continued)
4. Compare the prespecified percent tolerance 𝜀! with 𝜀"
5. If 𝜀" < 𝜀!, stop. Otherwise repeat the process.

𝜀" denotes approximate percent relative error, which is given by,

𝜀" =
𝑥#$%& − 𝑥#'()

𝑥#$%&
×100%

𝜀" =
𝑥* −

𝑥* + 𝑥+
2

𝑥* + 𝑥+
2

×100% 𝑜𝑟 𝜀" =
𝑥+ −

𝑥* + 𝑥+
2

𝑥* + 𝑥+
2

×100%
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§ Termination criteria and error estimates

1. Relative error: stop when relative estimated error, i.e., relative 
added value, is negligible

𝜀! =
𝑥"#$% − 𝑥"&'(

𝑥"#$%
×100% ≤ 𝜀)

2. Absolute error: absolute added values go to zero: ∆𝑥~0
§ But we do not know the true solution
§ Each successive iteration halves the maximum error
§ Estimate the number of iterations required to attain an absolute error

𝑛 = log*
∆𝑥+

𝐸!,(
§ ∆𝑥+ is the initial error (e.g., the first interval), 𝐸!,( is the desired absolute error.
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§ Termination criteria and error estimates

§ Example:

§ If the desired absolute magnitude of the error is -!×/
0++%

= 1023 and ∆𝑥+ = 2, how 
many iterations will you have to do to get the required accuracy in the solution.

§ solution:

1023 = *
*"

⇒ 24 = 2×103 ⇒ 𝑘 ≅ 14.3 = 15
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§Evaluation of method

16

Pros

§ Easy

§ Always find root

§ Number of iterations required 
to attain an absolute error 
can be computed a priori. 

Cons

§ Slow

§ Know a and b that bound root

§ Multiple roots

§ No account is taken of f(xl) and f(xu), 
if f(xl) is closer to zero, it is likely 
that root is closer to xl .



§ Bisection method is a kind of brute force 
scheme
§ Somewhat inefficient approach
§ Does not account the magnitudes of 𝑓(𝑥!) and 
𝑓(𝑥")

§ False position method (linear interpolation 
method)
§ Motivation 
§ If a real root is bounded by xl and xu of f(x)=0, 

then we can approximate the solution by doing a 
linear interpolation between the points [xl, f(xl)] 
and [xu, f(xu)] to find the xr value such that 
l(xr)=0, l(x) is the linear approximation of f(x).
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§ Algorithm:
1. Find a pair of values of x, xl and xu such that fl=f(xl) 

<0 and fu=f(xu) >0.
2. Estimate the value of the root from the following 

formula,

𝑓 𝑥# = 𝑓 𝑥" +
𝑓 𝑥" − 𝑓 𝑥!

𝑥" − 𝑥!
(𝑥# − 𝑥")

and evaluate f(xr). 18



§Algorithm: (continued)
3. Use the new point to replace one of the 

original points, keeping the two points on 
opposite sides of the x axis.

If f(xr)<0 then xl=xr ==> fl=f(xr)

If f(xr)>0 then xu=xr ==> fu=f(xr)

If f(xr)=0 then you have found the root and 
need go no further!
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§ Algorithm: (continued)
4. See if the new xl and xu are close enough 

for convergence to be declared. If they 
are not go back to step 2.

§ Why this method?
§ Faster
§ Always converges for a single root.

Note: Always check by substituting estimated 
root in the original equation to determine 
whether f(xr) ≈ 0.
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Pitfalls of the False-position method

§ Error of False position can decrease much faster 
than that of Bisection, but if the function is far 
from a straight line, False Position will be slow 
(one of the end point remains fixed). 
§ Example of 𝑓 𝑥 = 𝑥0+ − 1

§ Remedy: Modified False Position 
§ If end point remains fixed for a few iterations, reduce 

end-point function values at end point, e.g., divided by 2 
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§ Motivation:
§ The bracketing method, by assuming an 

interval bounded by a lower and an upper 
bound (necessarily bracket the root), 
iteratively shrink an interval to find the 
solution.

1. Slow to converge;
2. Without considering the function itself.

§ Open method
§ Exploiting formulas that requires only a single 

start point of x or two starting points that do 
not necessarily bracket the root.

§ If the method converge, it normally do so 
much more quickly than the bracketing 
method.
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1. Fixed-point iteration

2. Newton Raphson method
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§ Rearrange the function so that x is on the left side of the equation:
1. 𝑓 𝑥 = 0 ⇒ 𝑥 = 𝑔(𝑥) ⇒ 𝑔 𝑥 = 𝑓 𝑥 + 𝑥
2. 𝑥, = 𝑔 𝑥,-* , 𝑤𝑖𝑡ℎ 𝑘𝑛𝑜𝑤𝑛 𝑖𝑛𝑡𝑖𝑎𝑙 𝑥. and 𝑘 = 1, 2, …
§ Example:

§ 𝑓 𝑥 = 𝑥! − 𝑥 − 2 𝑎𝑛𝑑 𝑥 > 0
§⇒ 𝑔 𝑥 = 𝑥! − 2 𝑜𝑟 𝑔 𝑥 = 𝑥 + 2 𝑜𝑟 𝑔 𝑥 = 1 + !

"

• Bracketing methods are “convergent”.

• Fixed-point methods may sometime “diverge”, depending on the 
stating point (initial guess) and how the function behaves.
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Convergence

§ x=g(x) can be expressed as a pair of 
equations:

1. y1=x

2. y2=g(x) (component equations)

§ Plot them separately.
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Convergence

§ Sufficient condition: 
§ Fixed-point iteration converges if 

𝑔′(𝑥) < 1

§ When the method converges, the error is 
roughly proportional to or less than the 
error of the previous step, therefore it is 
called “linearly convergent.”
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Proof of the convergence condition:

§ Based on the definition, we have 𝑥450 = 𝑔 𝑥4 . Suppose that the true solution is 
𝑥" = 𝑔 𝑥" , by taking subtraction, we have

𝑥" − 𝑥450 = 𝑔 𝑥" − 𝑔 𝑥4 (1)
§ Relying on the derivation mean theorem, we have 

𝑔6 𝜉 =
𝑔 𝑥" − 𝑔 𝑥4

𝑥" − 𝑥4
, 𝑤ℎ𝑒𝑟𝑒 𝜉 ∈ 𝑥4, 𝑥" (2)

§ By substituting (1) into (2), we have
𝑥" − 𝑥450 = (𝑥" − 𝑥4)𝑔6 𝜉

§ If the true error of iteration k is defined as 𝐸7,4 = 𝑥" − 𝑥4, we have,
𝐸7,450 = 𝐸7,4𝑔6 𝜉

Consequently, if 𝑔′(𝑥) < 1, the errors decrease with each iteration; for 𝑔′(𝑥) > 1, 
the error grows. 27

if a function g(x) and its first 
derivative are continuous over 
an interval a <= x <= b, then 
there exists at least one value of 
x = within the interval satisfies
…



§ Aitken acceleration:

Assume that, 𝑒# = 𝑥# − 𝑟 = 𝐾#$%𝑒% 𝑜𝑟 𝑥# = 𝑟 + 𝐾#$%𝑒%
Similarly, if 𝑒#&% = 𝑥#&% − 𝑟 = 𝐾#𝑒% and 𝑒#&' = 𝑥#&' − 𝑟 = 𝐾#&%𝑒% , then we have,

𝑥#&% = 𝑟 + 𝐾#𝑒% and 𝑥#&' = 𝑟 + 𝐾#&%𝑒%
Substitute these two equations into

𝑥#𝑥#&' − 𝑥#&%'

𝑥#&' − 2𝑥#&% + 𝑥#
We have

𝑥#𝑥#&' − 𝑥#&%'

𝑥#&' − 2𝑥#&% + 𝑥#
=

𝑟 + 𝐾#$%𝑒% 𝑟 + 𝐾#&%𝑒% − 𝑟 + 𝐾#𝑒% '

𝑟 + 𝐾#&%𝑒% − 2 𝑟 + 𝐾#𝑒% + 𝑟 + 𝐾#$%𝑒%
=
𝑟 𝐾#&% − 2𝐾# + 𝐾#$% 𝑒%
𝐾#&% − 2𝐾# + 𝐾#$% 𝑒%

= r

From three successive estimates of the roots, 𝑥%, 𝑥', and 𝑥(, we extrapolate to an improved 
estimate.

However, since the assumption of constant ratio is not normally true, our extrapolated value is not 
exact. But it is usually improved. We can use this technique by calculating two values begin with 𝑥%, 
extrapolating, calculating two new values, extrapolating again, etc.
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§ Aitken acceleration (continued):

Define
Δ𝑥8 = 𝑥850 − 𝑥8

Δ*𝑥8 = Δ Δ𝑥8 = Δ 𝑥850 − 𝑥8 = Δ𝑥850 − Δ𝑥8 = 𝑥85* − 2𝑥850 + 𝑥8
The acceleration scheme becomes

𝑟 =
𝑥#𝑥#5* − 𝑥#50*

𝑥#5* − 2𝑥#50 + 𝑥#
= 𝑥# −

Δ𝑥# *

Δ*𝑥#
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§ Aitken acceleration (continued):

§ Example: 𝑓 𝑥 = 𝑥* − 2𝑥 − 3 = 0;we select 𝑔 𝑥 = 2𝑥 + 3 and 𝑥+ = 4

30

Fixed-point without 
acceleration

Fixed-point with Aitken 
acceleration 

𝚫𝐱 𝚫𝟐𝐱

𝑥" = 4 𝑥" = 4

𝑥# = 11 = 3.316 𝑥# = 11 = 3.316 0.684

𝑥$ = 9.632 = 3.104 𝑥$ = 9.632 = 3.104 0.212 0.472

𝑥% = 9.208 = 3.034 The accelerated estimate is 

𝑟 = 4.000 −
0.684 $

0.472 = 3.009

𝑥& = 9.068 = 3.011 We jumped ahead about two iterations.

𝑥' = 9.022 = 3.004



§ Aitken acceleration (continued):

§ When to use the Aitken acceleration?

Suppose for some 𝑛, we have 𝑥#, 𝑥#50, 𝑥#5*, 𝑥#59, then evaluate the following,

𝐶 =
∑𝑥8𝑥850 −

1
3∑𝑥8 ∑𝑥850

∑𝑥8* −
1
3 ∑𝑥8 * ∑𝑥850* − 13 ∑𝑥850 *

Where the sums are from 𝑖 = 𝑛 to 𝑖 = 𝑛 + 1. If 𝐶 is close to ±1, then Aitken 
acceleration is most effective.
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§ Aitken acceleration (continued):

§ Example: 𝑓 𝑥 = 𝑥' − 2𝑥 − 3 = 0;we select 𝑔 𝑥 = 2𝑥 + 3 and 𝑥% = 4
We have,

𝑥) = 4.000
𝑥% = 3.316
𝑥' = 3.104
𝑥( = 3.034

We find that with 𝑛 = 0 in the formula, 

𝐶 =
∑*+)' 𝑥*𝑥*&% +

1
3∑*+)

' 𝑥* ∑*+)' 𝑥*&%

∑*+)' 𝑥*' −
1
3 ∑*+)' 𝑥*

' (∑*+)' 𝑥*&%' − 13 ∑*+)' 𝑥*&%
')

32.974 − 13×10.42×9.454

(36.631 − 36.1921)(29.8358 − 29.7927)

= 0.99992
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§ The Newton-Raphson method is the most widely used root-locating method.

§ The Newton-Raphson method is designed based on Taylor series expansion:

33
!"
!"

!"#
$%&'())(*$+*

#!,"-./0'*..-1,..2(34'.R0'+6)11R..T0'
89

!"!"!"!"

:

:

:+:+

;
9

:

!

!
!!

!!!!

!!!!

"#
"#""

""$%"#$#%"

"&""#""#"#"#

′
−=

−′+=

=

∆+
∆′′+∆′+=

+

+

++

+

Newton-Raphson formula

Solve for



Geometrical interpretation:

§ Using the slope to approximate the original 
function

§ The updating rule: 

𝑓6 𝑥8 =
𝑓 𝑥8 − 0
𝑥8 − 𝑥850

⇒ 𝑥850 = 𝑥8 −
𝑓(𝑥8)
𝑓6(𝑥8)
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Example: f(x) = ln(x) = 0, with initial guess x0=0.1

Solution: 

§ Initialization: f’(x) = 1/x, f(x0) = -2.30, and f’(x) = 10;

§ Iteration #1: 
1. x1=x0-f(x0)/f’(x0)=0.33
2. f(x1) = ln(0.33) = -1.11, and f’(x1) = 1/0.33 = 3

§ Iteration #2:
1. x2=x1-f(x1)/f’(x1)=0.70
2. f(x2) = ln(0.70) = -0.36 and f’(x2)=1/0.70=1.43

§ Iteration #3:
1. x3 = x2-f(x2)/f’(x2)=0.95
2. f(x2) = ln(0.95) = -0.05 and f’(x2)=1/0.95=1.05 35

𝑥()# = 𝑥( −
𝑓(𝑥()
𝑓*(𝑥()

Newton-Raphson formula

Closing to the true value 1.



Convergence of Newton-Raphson method

§ Suppose the true solution is 𝑥", so 𝑓 𝑥" = 0. Based on the Taylor expansion, we 
have

0 = 𝑓 𝑥8 + 𝑓6 𝑥8 𝑥" − 𝑥8 +
𝑓66 𝜉
2!

𝑥" − 𝑥8 * (1)

§ The estimation 𝑥850 satisfies:
0 = 𝑓 𝑥8 + 𝑓6 𝑥8 𝑥850 − 𝑥8 (2)

§ By substituting (2) into (1), we have,

0 = 𝑓6 𝑥8 𝑥" − 𝑥850 +
𝑓66 𝜉
2!

𝑥" − 𝑥8 *

§ If the true error of iteration i is defined as 𝐸7,8 = 𝑥" − 𝑥8, and we assume 
convergence and 𝑥8 𝑎𝑛𝑑 𝜉 should be eventually approximated to the root 𝑥" , we 
have

0 = 𝑓6 𝑥8 𝐸7,850 +
𝑓66 𝜉
2!

𝐸7,8* ⇒ 𝐸7,850 =
−𝑓66 𝑥"
2𝑓6 𝑥"

𝐸7,8* 36

Quadratic 
convergence 



§Features:
1. Converges fast (quadratic convergence), if it is 

convergence.

2. Requires only one initial guess.

37



§ Issues:

1. Divergence: inflection points in the vicinity of the root, i.e. f’’(x)=0 

2. Oscillations: Iterations can oscillate around a local minima or maxima 

3. Root Jumping: Near-zero slope encountered 

4. Division by zero: zero slope 

38



§ Modification:
1. Initial solution: Randomly select multiple initial solutions 

2. Update rule: scale the step

3. Stopping criteria: set maximum iteration 

39



Notes in the programming:

1. Always to substitute the final answer in the original function to check its result is 
close to zero;

2. Set upper limit on the number of iterations (i.e., set maximum iteration) guard 
against oscillating, slowly convergent, or divergent solutions that could persist 
interminably

3. Note that f’(x) might equal zero 

40



Piecewise-linear function
§ Question: What’s the result for the initial value x0?

§ Solution: bisection method
41



§ The Newton-Raphson method is a convenient method for functions whose 
derivatives can be evaluated analytically. It may not be convenient for functions 
whose derivatives cannot be evaluated analytically.

42



The Secant method

§ A slight variation of Newton’s method for functions 
whose derivatives are difficult to evaluate. For 
these cases the derivative can be approximated by 
a backward finite divided difference.

1. Requires two initial estimates of x , e.g.,  xo, 
x1. However, because f(x) is not required to 
change signs between estimates, it is not 
classified as a “bracketing” method.

2. The secant method has the same properties as 
Newton’s method. Convergence is not 
guaranteed for all xo, f(x).
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§ The Secant method
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§ For finding a complex root of a polynomial

§ For polynomials, the complex roots occur in conjugate pairs if the coefficients are 
all real-valued.

§ => If we extract the quadratic factors that are the products of the pairs of complex 
roots, we can avoid complex arithmetic because such quadratic factors have real 
coefficients.

§ => First, we need to develop the algorithm for synthetic division by a trial 
quadratic, 𝑥* − 𝑟𝑥 − 𝑠, which is hopefully near to the desired factor of the 
polynomial. We have,

𝑃# 𝑥 = 𝑎0𝑥# + 𝑎*𝑥#20 +⋯+ 𝑎#50 = 𝑥* − 𝑟𝑥 − 𝑠 𝑄#2* 𝑥 + 𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟
= 𝑥* − 𝑟𝑥 − 𝑠 𝑏0𝑥#2* + 𝑏*𝑥#29 +⋯+ 𝑏#2*𝑥 + 𝑏#20 + 𝑏# 𝑥 − 𝑟 + 𝑏#50

𝑏# 𝑥 − 𝑟 + 𝑏#50 = 0，if 𝑥* − 𝑟𝑥 − 𝑠 is an exact divisor of 𝑃# 𝑥

45Linear term for providing later simplicity



§ Continued：
On multiplying out and equating coefficients, we have,

𝑎$ = 𝑏$
𝑎% = 𝑏% − 𝑟𝑏$

𝑎& = 𝑏& − 𝑟𝑏% − 𝑠𝑏$
𝑎' = 𝑏' − 𝑟𝑏& − 𝑠𝑏%

⋮
𝑎( = 𝑏( − 𝑟𝑏()$ − 𝑠𝑏()%
𝑎(*$ = 𝑏(*$ − 𝑟𝑏( − 𝑠𝑏()$

or 

𝑏$ = 𝑎$
𝑏% = 𝑎% + 𝑟𝑏$

𝑏& = 𝑎& + 𝑟𝑏% + 𝑠𝑏$
𝑏' = 𝑎' + 𝑟𝑏& + 𝑠𝑏%

⋮
𝑏( = 𝑎( + 𝑟𝑏()$ + 𝑠𝑏()%
𝑏(*$ = 𝑎(*$ + 𝑟𝑏( + 𝑠𝑏()$

We would like 𝑏( and 𝑏(*$ to be zero, for that would show 𝑥% − 𝑟𝑥 − 𝑠 to be a quadratic 
factor the polynomial. However, this will normally not to be true.
=>we need to properly change the values of 𝑟 and 𝑠 to make the remainder zero or at 
least make its coefficients smaller.

46

𝑃+ 𝑥 = 𝑎#𝑥+ + 𝑎$𝑥+,# +⋯+ 𝑎+)#
= 𝑥$ − 𝑟𝑥 − 𝑠 𝑏#𝑥+,$ + 𝑏$𝑥+,% +⋯+ 𝑏+,$𝑥 + 𝑏+,# + 𝑏+ 𝑥 − 𝑟 + 𝑏+)#



§ Continued:

§ Expanding 𝑏( and 𝑏(*$ as a Taylor series, we have,

𝑏( 𝑟∗, 𝑠∗ = 𝑏( 𝑟, 𝑠 +
𝜕𝑏(
𝜕𝑟

𝑟∗ − 𝑟 +
𝜕𝑏(
𝜕𝑠

𝑠∗ − 𝑠 +⋯ ,

𝑏(*$ 𝑟∗, 𝑠∗ = 𝑏(*$ 𝑟, 𝑠 +
𝜕𝑏(*$
𝜕𝑟

𝑟∗ − 𝑟 +
𝜕𝑏(*$
𝜕𝑠

𝑠∗ − 𝑠 +⋯

Let us take (𝑟∗, 𝑠∗) as the point at which the remainder is zero, and,
𝑟∗ − 𝑟 = Δ𝑟, 𝑠∗ − 𝑠 = Δ𝑠

We assume that Δ𝑟 and Δ𝑠 are small, so the terms in Taylor series of higher order than the 
first are negligible. We have,

𝑏( 𝑟∗, 𝑠∗ = 0 ≐ 𝑏( 𝑟, 𝑠 +
𝜕𝑏(
𝜕𝑟

Δ𝑟 +
𝜕𝑏(
𝜕𝑠

Δ𝑠,

𝑏(*$ 𝑟∗, 𝑠∗ = 𝑏(*$ 𝑟, 𝑠 +
𝜕𝑏(*$
𝜕𝑟

Δ𝑟 +
𝜕𝑏(*$
𝜕𝑠

Δ𝑠 47



§ Continued:

§ The required partial derivatives can be obtained from the 𝑏’s by a second synthetic 
division by the factor 𝑥% − 𝑟𝑥 − 𝑠. We can define a set of 𝑐 as follows,

𝑐$ = 𝑏$
𝑐% = 𝑏% + 𝑟𝑐$

𝑐& = 𝑏& + 𝑟𝑐% + 𝑠𝑐$
𝑐' = 𝑏' + 𝑟𝑐& + 𝑠𝑐%

⋮
𝑐( = 𝑏( + 𝑟𝑐()$ + 𝑠𝑐()%

=> 

,-!
,#

= ,.!
,#

= 0
,-"
,#

= 𝑟 ,-!
,#
+ 𝑏$ = 𝑏$ = 𝑐$

,-#
,#

= 𝑟 ,-"
,#
+ 𝑏% = 𝑐%

,-$
,#

= 𝑟 ,-#
,#
+ 𝑏& + 𝑠𝑟

,-"
,#

= 𝑏& + 𝑟𝑐% + 𝑠𝑐$ = 𝑐&
⋮

,-%
,#

= 𝑟 ,-%&!
,#

+ 𝑏()$ + 𝑠𝑟
,-%&"
,#

= 𝑏()$ + 𝑟𝑐()% + 𝑠𝑐()& = 𝑐()$
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𝑏+ 𝑟∗, 𝑠∗ = 0 ≐ 𝑏+ 𝑟, 𝑠 +
𝜕𝑏+
𝜕𝑟 Δ𝑟 +

𝜕𝑏+
𝜕𝑠 Δ𝑠,

𝑏+)# 𝑟∗, 𝑠∗ = 𝑏+)# 𝑟, 𝑠 +
𝜕𝑏+)#
𝜕𝑟 Δ𝑟 +

𝜕𝑏+)#
𝜕𝑠 Δ𝑠



§ Continued:

§ Similarly, for the partial derivatives respect to 𝑠, we have,

𝜕𝑏$
𝜕𝑠 =

𝜕𝑎$
𝜕𝑠 = 0

𝜕𝑏%
𝜕𝑠

= 𝑟
𝜕𝑏$
𝜕𝑠

+
𝜕𝑎%
𝜕𝑠

= 0

𝜕𝑏&
𝜕𝑠

= 𝑟
𝜕𝑏%
𝜕𝑠

+ 𝑠
𝜕𝑏$
𝜕𝑠

+ 𝑏$ = 𝑏$ = 𝑐$
𝜕𝑏'
𝜕𝑠

= 𝑟
𝜕𝑏&
𝜕𝑠

+ 𝑠
𝜕𝑏%
𝜕𝑠

+ 𝑏% = 𝑏% + 𝑟𝑐$ = 𝑐%
⋮

𝜕𝑏(
𝜕𝑠

= 𝑟
𝜕𝑏()$
𝜕𝑠

+ 𝑠
𝜕𝑏()%
𝜕𝑠

+ 𝑏()% = 𝑏()% + 𝑟𝑐()& + 𝑠𝑐()' = 𝑐()%
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§ Continued:

§ The partial derivatives are equal to the properly corresponding 𝑐, and we have,
−𝑏# = 𝑐#20Δ𝑟 + 𝑐#2*Δ𝑠,
−𝑏#50 = 𝑐#Δ𝑟 + 𝑐#20Δ𝑠.

By Cramer’s rule, we have,

Δ𝑟 =

−𝑏# 𝑐#2*
−𝑏#50 𝑐#20
𝑐#20 𝑐#2*
𝑐# 𝑐#20

Δ𝑠 =

𝑐#20 −𝑏#
𝑐# −𝑏#50
𝑐#20 𝑐#2*
𝑐# 𝑐#20
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§ Example: Find the quadratic factors of 
𝑥3 − 1.1𝑥9 + 2.3𝑥* + 0.5𝑥 + 3.3 = 0

Use 𝑥* + 𝑥 + 1 as starting factor (𝑟 = −1, 𝑠 = −1). We have,
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𝒂𝟏 𝒂𝟐 𝒂𝟑 𝒂𝟒 𝒂𝟓
1 -1.1 2.3 0.5 3.3

𝑟 = −1, -1.0 2.1 -3.4 0.8

𝑠 = −1 - -1.0 2.1 -3.4

1 -2.1 3.4 -0.8 (𝑏+) 0.7 (𝑏+)#)
-1.0 3.1 -5.5

- -1.0 3.1

1 -3.1(𝑐+,$) 5.5 (𝑐+,#) -3.2 (𝑐+)

𝑏# = 𝑎#
𝑏$ = 𝑎$ + 𝑟𝑏#

𝑏% = 𝑎% + 𝑟𝑏$ + 𝑠𝑏#
𝑏& = 𝑎& + 𝑟𝑏% + 𝑠𝑏$

⋮
𝑏+ = 𝑎+ + 𝑟𝑏+,# + 𝑠𝑏+,$
𝑏+)# = 𝑎+)# + 𝑟𝑏+ + 𝑠𝑏+,#

𝑐# = 𝑏#
𝑐$ = 𝑏$ + 𝑟𝑐#

𝑐% = 𝑏% + 𝑟𝑐$ + 𝑠𝑐#
𝑐& = 𝑏& + 𝑟𝑐% + 𝑠𝑐$

⋮
𝑐+ = 𝑏+ + 𝑟𝑐+,# + 𝑠𝑐+,$



§ Example: continued

Δ𝑟 =

−𝑏# 𝑐#2*
−𝑏#50 𝑐#20
𝑐#20 𝑐#2*
𝑐# 𝑐#20

=
0.8 −3.1
−0.7 5.5
5.5 −3.1
−3.2 5.5

=
2.23
20.33

= 0.11,⇒ 𝑟∗ = −1 + 0.11 = −0.89

Δ𝑠 =

𝑐#20 −𝑏#
𝑐# −𝑏#50
𝑐#20 𝑐#2*
𝑐# 𝑐#20

=
5.5 0.8
−3.2 −0.7
5.5 −3.1
−3.2 5.5

= −
1.29
20.33 = −0.06,⇒ 𝑠∗ = −1.06
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§ Example: Continued

Second round:
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𝒂𝟏 𝒂𝟐 𝒂𝟑 𝒂𝟒 𝒂𝟓
1 -1.1 2.3 0.5 3.3

𝑟 = −0.89, -0.89 1.77 -2.68 0.06

𝑠 = −1.06 - -1.06 2.11 -3.17

1 -1.99 3.01 -0.07 (𝑏+) 0.17 (𝑏+)#)
-0.89 2.56 -4.01

- -1.06 3.05

1 -1(𝑐+,$) -2.88 
(𝑐+,#)

4.51 (𝑐+) -1.03

𝑏# = 𝑎#
𝑏$ = 𝑎$ + 𝑟𝑏#

𝑏% = 𝑎% + 𝑟𝑏$ + 𝑠𝑏#
𝑏& = 𝑎& + 𝑟𝑏% + 𝑠𝑏$

⋮
𝑏+ = 𝑎+ + 𝑟𝑏+,# + 𝑠𝑏+,$
𝑏+)# = 𝑎+)# + 𝑟𝑏+ + 𝑠𝑏+,#

𝑐# = 𝑏#
𝑐$ = 𝑏$ + 𝑟𝑐#

𝑐% = 𝑏% + 𝑟𝑐$ + 𝑠𝑐#
𝑐& = 𝑏& + 𝑟𝑐% + 𝑠𝑐$

⋮
𝑐+ = 𝑏+ + 𝑟𝑐+,# + 𝑠𝑐+,$



§ Example: continued

Δ𝑟 =

−𝑏# 𝑐#2*
−𝑏#50 𝑐#20
𝑐#20 𝑐#2*
𝑐# 𝑐#20

=
0.07 −2.88
−0.17 4.51
4.51 −2.88
−1.03 4.51

=
−0.175
17.374

= −0.010,⇒ 𝑟∗ = −0.89 − 0.010

= −0.9

Δ𝑠 =

𝑐#20 −𝑏#
𝑐# −𝑏#50
𝑐#20 𝑐#2*
𝑐# 𝑐#20

=
4.51 0.07
−1.03 −0.17
4.51 −2.88
−1.03 4.51

=
−0.694
17.374

= −0.040,⇒ 𝑠∗ = −1.10

The exact factors are (𝑥*0.9𝑥 + 1.1)(𝑥* − 2𝑥 + 3).
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§ All the methods discussed so far require a starting point sufficient near to the root 
or to the quadratic factor being sought.

§ Q-D algorithm is a relatively efficient method to determine all roots of polynomial 
without starting points.

§ For the given polynomials,
𝑃# 𝑥 = 𝑎0𝑥# + 𝑎*𝑥#20 +⋯+ 𝑎#50,

We can form an array of 𝑞 and 𝑒 terms, starting the tableau by calculating a first row 
𝑞 and a second row of 𝑒,

𝑞(0) = −
𝑎*
𝑎0
, 𝑎𝑙𝑙 𝑜𝑡ℎ𝑒𝑟 𝑞6𝑠 𝑎𝑟𝑒 𝑧𝑒𝑟𝑜,

𝑒(8) =
𝑎85*
𝑎850

, 𝑖 = 1, 2, 3,⋯ , 𝑛 − 1,

𝑒(+) = 𝑒(#) = 0
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§ Continued:

§ The start of the array is

§ A new row of 𝑞’s is computed by,
𝑛𝑒𝑤 𝑞(8) = 𝑒 8 − 𝑒 820 + 𝑞(8)

Note: the algorithm is “e” to right minus “e” to left plus q above
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𝑒(") 𝑞(#) 𝑒(#) 𝑞($) 𝑒($) 𝑞(%) ⋯ 𝑒(+,#) 𝑞(+) 𝑒(+)

−
𝑎$
𝑎#

0 0 0

0 𝑎%
𝑎$

𝑎&
𝑎%

𝑎+)#
𝑎+

0



§ Continued:

§ The start of the array is

§ A new row of 𝑒’s is computed by,

𝑛𝑒𝑤 𝑒(0) = (
𝑞 0*$

𝑞 0 )𝑒 0

Note: the algorithm is that “q” to right over “q” to left times e above.
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𝑒(") 𝑞(#) 𝑒(#) 𝑞($) 𝑒($) 𝑞(%) ⋯ 𝑒(+,#) 𝑞(+) 𝑒(+)

−
𝑎$
𝑎#

0 0 0

0 𝑎%
𝑎$

𝑎&
𝑎%

𝑎+)#
𝑎+

0



§ Example: 𝑃3 𝑥 = 128𝑥3 − 256𝑥9 + 160𝑥* − 32𝑥 + 1

§ The table is
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𝑒(") 𝑞($) 𝑒($) 𝑞(%) 𝑒(%) 𝑞(&) 𝑒(&) 𝑞(') 𝑒(')

−
𝑎%
𝑎$
= 2.00 0 0 0

0 𝑎&
𝑎%
= −0.625

𝑎'
𝑎&
= −0.200

𝑎()$
𝑎(

=
1
−32

= 0.031

0

𝑒 * − 𝑒 *+$

+ 𝑞 *

= −0.625 − 0
+ 2 = 1.375

0.425 0.169

0 𝑞 *)$

𝑞 * 𝑒 *

=
0.425
1.375

×−0.625

= −0.193

0



§ Example: 𝑃3 𝑥 = 128𝑥3 − 256𝑥9 + 160𝑥* − 32𝑥 + 1
§ Continued: Continuing to compute rows of q’s and then e’s until all the e-values 

approach zero. Then, the q-values assume the value of the roots.

§ (the 9th round)

§ The true values of the roots are 0.96194, 0.69134, 0.30866, and 0.03806
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𝑒(") 𝑞($) 𝑒($) 𝑞(%) 𝑒(%) 𝑞(&) 𝑒(&) 𝑞(') 𝑒(')

0.980 0.673 0.307 0.038

0 −0.005 −0.001 −0.000 0

0.975 0.677 0.308 0.308*



§ The Q-D algorithm can also solve the problem with conjugate complex roots.

§ Technically, if the given problem contains conjugate complex roots, we will observe 
that the e’s will not approach zero but will fluctuate in value.

§ In this case, the sum of two q-values on either side of this e will approach r and the 
product of the q above and to the left times the q below and to the right 
approaches “-s” in the factor 𝑥* − 𝑟𝑥 − 𝑠 .
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§ Example: 𝑃 𝑥 = 𝑥3 − 6𝑥9 + 12𝑥* − 19𝑥 + 12
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𝑞($) = −
𝑎%
𝑎$
, 𝑎𝑙𝑙 𝑜𝑡ℎ𝑒𝑟 𝑞,𝑠 𝑎𝑟𝑒 𝑧𝑒𝑟𝑜,

𝑒(*) =
𝑎*)%
𝑎*)$

, 𝑖 = 1, 2, 3,⋯ , 𝑛 − 1,

𝑒(") = 𝑒(() = 0
𝑛𝑒𝑤 𝑞(*) = 𝑒 * − 𝑒 *+$ + 𝑞(*)

𝑛𝑒𝑤 𝑒(*) = (
𝑞 *)$

𝑞 * )𝑒 *

𝑒(") 𝑞($) 𝑒($) 𝑞(%) 𝑒(%) 𝑞(&) 𝑒(&) 𝑞(') 𝑒(')

6.000 0 0 0

0 -2.000 -1.583 -0.632 0

4.000 0.417 0.951 0.632

0 -0.208 -3.610 -0.420 0

3.792 -2.985 4.141 1.052

0 0.164 5.008 -0.107 0



§ Example: Continued (6th round)

§ 𝑃 𝑥 = 𝑥3 − 6𝑥9 + 12𝑥* − 19𝑥 + 12
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𝑞($) = −
𝑎%
𝑎$
, 𝑎𝑙𝑙 𝑜𝑡ℎ𝑒𝑟 𝑞,𝑠 𝑎𝑟𝑒 𝑧𝑒𝑟𝑜,

𝑒(*) =
𝑎*)%
𝑎*)$

, 𝑖 = 1, 2, 3,⋯ , 𝑛 − 1,

𝑒(") = 𝑒(() = 0
𝑛𝑒𝑤 𝑞(*) = 𝑒 * − 𝑒 *+$ + 𝑞(*)

𝑛𝑒𝑤 𝑒(*) = (
𝑞 *)$

𝑞 * )𝑒 *

𝑒(") 𝑞($) 𝑒($) 𝑞(%) 𝑒(%) 𝑞(&) 𝑒(&) 𝑞(') 𝑒(')

4.017 4.712 -3.687 0.958

0 -0.019 -4.333 -0.019 0

3.998 0.398 0.627 0.977

0 -0.002 -6.826 -0.030 0

4.000 -6.426 7.423 1.007

0 0.003 7.885 -0.004 0

4.003 1.456 -0.466 1.010

Fluctuation => contains conjugate complex roots.



§ Example: Continued (8th round)

§ 𝑃 𝑥 = 𝑥3 − 6𝑥9 + 12𝑥* − 19𝑥 + 12
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𝑒(") 𝑞($) 𝑒($) 𝑞(%) 𝑒(%) 𝑞(&) 𝑒(&) 𝑞(') 𝑒(')

0 -0.002 -6.826 -0.030 0

4.000 -6.426 7.423 1.007

0 0.003 7.885 -0.004 0

4.003 1.456 -0.466 1.010

The result of the Q-D algorithm for the polynomial is 𝑥 − 1 𝑥 − 4 𝑥$ − 𝑥 + 3 = 𝑥& − 6𝑥% +
12𝑥$ − 19𝑥 + 12, i.e., 𝑞(#) converging to 4, 𝑞(&) converging to 1. Since 𝑒($) does not approach 
zero, 𝑞($) and 𝑞(%) represent a quadratic factor:

𝑟 ≐ 𝑞 $ + 𝑞 % = 1.456 − 0.466 = 0.990;
𝑠 ≐ − −6.426 × −0.466 = −2.995

the sum of two q-values on either side of this e will 
approach r and the product of the q above and to the 
left times the q below and to the right approaches “-s” 



§ Example: Continued
𝑃 𝑥 = 𝑥3 − 6𝑥9 + 12𝑥* − 19𝑥 + 12

𝑟 ≐ 𝑞 * + 𝑞 9 = 1.456 − 0.466 = 0.990;

𝑠 ≐ − −6.426 × −0.466 = −2.995

§ The quadratic factor is 𝑥* − 𝑟𝑥 − 𝑠 = 𝑥* − 0.990𝑥 + 2.995 ≈ 𝑥* − 𝑥 + 3

§ Two equal roots behave similarly.
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§ Pitfall of Q-D algorithm?

§ Division by zero.

§ We cannot compute the first q and e rows if one of the coefficients in the 
polynomial is zero.

§ In such a case, we change the variable to 𝑦 = 𝑥 − 1. 

§ Note: Subtracting 1 from the roots of the equation is an arbitrary choice, but this 
facilitates the reverse change of variable to get the roots of the original equation 
after the roots of the new equation in y has been found.
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§ Example: 𝑓 𝑥 = 𝑥3 − 2𝑥* + 𝑥 − 1 = 0

§ We let y=x-1 and use repeated synthetic division to determine the coefficients of 
f(y)=0. The successive remainder on dividing by x-1 are the coefficients of f(y).
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1 0 -2 1 -1 1

1 1 -1 0

1 1 -1 0 -1

1 2 1

1 2 1 1

1 3

1 3 4

1

1 4

1

Therefore, we have, 𝑓 𝑦 = 𝑦& + 4𝑦% + 4𝑦$ + 𝑦 − 1. Now, we can use Q-D algorithm to solve 
the problem and then get the roots of f(x)=0 by adding 1.



§ Muller’s method is an interpolation method that uses quadratic interpolation rather 
than linear.

§ => A second-degree polynomial is made to fit three points near a root, i.e., 
𝑥+, 𝑓 𝑥+ , 𝑥0, 𝑓 𝑥0 , 𝑥*, 𝑓 𝑥* , and the proper zero of this quadratic, using the 

quadratic formula, is used as the improved estimate of the root.

§ => The process is then repeated using the set of three points nearest the root being 
evaluated.
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§ The procedure for Muller’s method is developed by writing a 
quadratic equation that fits through three points in the vicinity of a 
root 𝑥+, 𝑓 𝑥+ , 𝑥0, 𝑓 𝑥0 , 𝑥*, 𝑓 𝑥* , in the form,

𝑎𝑣* + 𝑏𝑣 + 𝑐
For simplicity, we can write parabolic equation in a convenient form 
(axes passing through 𝑥*, 𝑓 𝑥* ), i.e.,

𝑓 𝑥 = 𝑎 𝑥 − 𝑥* * + 𝑏 𝑥 − 𝑥* + 𝑐
The coefficients can be evaluated by substituting each of the three 
points

𝑓 𝑥+ = 𝑎 𝑥+ − 𝑥* * + 𝑏 𝑥+ − 𝑥* + 𝑐
𝑓 𝑥0 = 𝑎 𝑥0 − 𝑥* * + 𝑏 𝑥0 − 𝑥* + 𝑐
𝑓 𝑥* = 𝑎 𝑥* − 𝑥* * + 𝑏 𝑥* − 𝑥* + 𝑐
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§ Continued:

A
𝑓 𝑥) = 𝑎 𝑥) − 𝑥' ' + 𝑏 𝑥) − 𝑥' + 𝑐
𝑓 𝑥% = 𝑎 𝑥% − 𝑥' ' + 𝑏 𝑥% − 𝑥' + 𝑐
𝑓 𝑥' = 𝑎 𝑥' − 𝑥' ' + 𝑏 𝑥' − 𝑥' + 𝑐

⇒ F
𝑐 = 𝑓 𝑥'

𝑓 𝑥) − 𝑓 𝑥' = 𝑎 𝑥) − 𝑥' ' + 𝑏 𝑥) − 𝑥'
𝑓 𝑥% − 𝑓 𝑥' = 𝑎 𝑥% − 𝑥' ' + 𝑏 𝑥% − 𝑥'

(1)

Here, we define,

ℎ) = 𝑥% − 𝑥), ℎ% = 𝑥' − 𝑥%, 𝛿) =
𝑓 𝑥% − 𝑓 𝑥)

𝑥% − 𝑥)
, 𝛿% =

𝑓 𝑥' − 𝑓 𝑥%
𝑥' − 𝑥%

Substituting these to Eq. 1, we have,
ℎ) + ℎ% 𝑏 − ℎ) + ℎ% '𝑎 = ℎ)𝛿) + ℎ%𝛿%,

ℎ%𝑏 − ℎ%'𝑎 = ℎ%𝛿%
Then, we have,

𝑎 =
𝛿% − 𝛿)
ℎ% + ℎ)

𝑏 = 𝑎ℎ% + 𝛿%
𝑐 = 𝑓 𝑥'
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§ Continued: 𝑓 𝑥 = 𝑎 𝑥 − 𝑥* * + 𝑏 𝑥 − 𝑥* + 𝑐

§ Now we have,
𝑎 =

𝛿0 − 𝛿+
ℎ0 + ℎ+

𝑏 = 𝑎ℎ0 + 𝛿0
𝑐 = 𝑓 𝑥*

Then, by using the quadratic formula, we can derive the estimated root as follows,

𝑥9 − 𝑥* =
−𝑏 ± 𝑏* − 4𝑎𝑐

2𝑎
=

−2𝑐
𝑏 ± 𝑏* − 4𝑎𝑐

Note that the use of the quadratic formula means that both real and complex roots 
can be located. Here, we select the root closest to 𝑥*.
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§ Example: Use Muller’s method with guesses of 𝑥+, 𝑥0, 𝑎𝑛𝑑 𝑥* = 4.5, 5.5, 𝑎𝑛𝑑 5, 
respectively, to determine a root of the equation

𝑓 𝑥 = 𝑥9 − 13𝑥 − 12

Solution: First, we evaluate the function at the guesses,
𝑓 𝑥+ = 4.5 = 20.625, 𝑓 𝑥0 = 5.5 = 82.875, 𝑓 𝑥* = 5 = 48

Then, we derive,
ℎ+ = 𝑥0 − 𝑥+ = 1, ℎ0 = 𝑥* − 𝑥0 = −0.5,

𝛿+ =
𝑓 𝑥0 − 𝑓 𝑥+

𝑥0 − 𝑥+
= 62.25, 𝛿0 =

𝑓 𝑥* − 𝑓 𝑥0
𝑥* − 𝑥0

= 69.75

Accordingly, we have,
𝑎 =

𝛿0 − 𝛿+
ℎ0 + ℎ+

= 15

𝑏 = 𝑎ℎ0 + 𝛿0 = 62.25
𝑐 = 𝑓 𝑥* = 48 71



§ Example: Use Muller’s method with guesses of 𝑥+, 𝑥0, 𝑎𝑛𝑑 𝑥* = 4.5, 5.5, 𝑎𝑛𝑑 5, 
respectively, to determine a root of the equation

𝑓 𝑥 = 𝑥9 − 13𝑥 − 12

Solution: First, we evaluate the function at the guesses,
𝑓 𝑥+ = 4.5 = 20.625, 𝑓 𝑥0 = 5.5 = 82.875, 𝑓 𝑥* = 5 = 48

Then, we derive,
ℎ+ = 𝑥0 − 𝑥+ = 1, ℎ0 = 𝑥* − 𝑥0 = −0.5,

𝛿+ =
𝑓 𝑥0 − 𝑓 𝑥+

𝑥0 − 𝑥+
= 62.25, 𝛿0 =

𝑓 𝑥* − 𝑓 𝑥0
𝑥* − 𝑥0

= 69.75

Accordingly, we have,
𝑎 =

𝛿0 − 𝛿+
ℎ0 + ℎ+

= 15

𝑏 = 𝑎ℎ0 + 𝛿0 = 62.25
𝑐 = 𝑓 𝑥* = 48

⇒ 𝑥9 = 𝑥* +
−𝑏 ± 𝑏* − 4𝑎𝑐

2𝑎 = 3.976487
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§ Example: Use Muller’s method with guesses of 𝑥+, 𝑥0, 𝑎𝑛𝑑 𝑥* = 4.5, 5.5, 𝑎𝑛𝑑 5, 
respectively, to determine a root of the equation

𝑓 𝑥 = 𝑥9 − 13𝑥 − 12

Solution (continued): Check stopping criterion,
𝜖! =

𝑥9 − 𝑥*
𝑥9

×100% = 25.74%

The error is large, new guesses are assigned, i.e., 𝑥+ = 𝑥0 = 5.5, 𝑥0 = 𝑥* = 5, 𝑎𝑛𝑑 𝑥* =
𝑥9 = 3.976487; the calculation is repeated, and we have,
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i 𝒙𝒓 𝝐𝒂(%)
0 5

1 3.976487 25.74
2 4.00105 0.6139

3 4 0.0262

4 4 0.0000119



§ Both Bisection and False Position (including modified version)
§ Convergent methods, but can be slow (linear) and thus can require lots of function 

evaluations, each of which can be very expensive

§ For Newton-Raphson, Converges fast (quadratic convergence), if it converges; but 
no general convergence criterion.

§ The behaviors for root finding methods cannot be generalized (results are function 
dependent)

§ Methods for finding roots of polynomials: Bairstow’s method, Q-D algorithm, Muller’s 
method.

§ Always substitute estimate of root 𝑥" at the end to check how close estimate is to 
𝑓 𝑥" = 0. 
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